The metal ion in the active site of the membrane glucose dehydrogenase of Escherichia coli.

نویسندگان

  • Peter L James
  • Christopher Anthony
چکیده

All pyrroloquinoline quinone (PQQ)-containing dehydrogenases whose structures are known contain Ca(2+) bonded to the PQQ at the active site. However, membrane glucose dehydrogenase (GDH) requires reconstitution with PQQ and Mg(2+) ions (but not Ca(2+)) for activity. To address the question of whether the Mg(2+) replaces the usual active site Ca(2+) in this enzyme, mutant GDHs were produced in which residues proposed to be involved in binding metal ion were modified (D354N-GDH and N355D-GDH and D354N-GDH/N355D-GDH). The most remarkable observation was that reconstitution with PQQ of the mutant enzymes was not supported by Mg(2+) ions as in the wild-type GDH, but it could be supported by Ca(2+), Sr(2+) or Ba(2+) ions. This was competitively inhibited by Mg(2+). This result, together with studies on the kinetics of the modified enzymes have led to the conclusion that, although a Ca(2+) ion is able to form part of the active site of the genetically modified GDH, as in all other PQQ-containing quinoproteins, a Mg(2+) ion surprisingly replaces Ca(2+) in the active site of the wild-type GDH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periplasmic expression of Bacillus thermocatenulatus lipase in Escherichia coli in presence of different signal sequences

Efforts to express lipase in the periplasmic space of Escherichia coli have so far been unsuccessful andmost of the expressed recombinant lipases accumulate in the insoluble cell fraction. To evaluate the role ofnative and heterologous signal peptides in translocation of the lipase across the inner membrane of E. coli,the lipase gene (btl2) was cloned downstream of the native ...

متن کامل

Partial Purification and Characterization of the Recombinant Benzaldehyde Dehydrogenase from Rhodococcus ruber UKMP-5M

Background: Benzaldehyde dehydrogenase (BZDH) is encoded by the xylC that catalyzes the conversion of benzaldehyde into benzoate in many pathways such as toluene degradation. Objectives: In this study, the xylC gene from Rhodococcus ruber UKMP-5M was expressed in Escherichia coli, purified, and characterized.Materials and Methods: The xylC was amplified and cloned in E. coli. The re...

متن کامل

Automatic classification of highly related Malate Dehydrogenase and L-Lactate Dehydrogenase based on 3D-pattern of active sites

Accurate protein function prediction is an important subject in bioinformatics, especially wheresequentially and structurally similar proteins have different functions. Malate dehydrogenaseand L-lactate dehydrogenase are two evolutionary related enzymes, which exist in a widevariety of organisms. These enzymes are sequentially and structurally similar and sharecommon active site residues, spati...

متن کامل

Enhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli

Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...

متن کامل

Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine.

The requirements for substrate binding in the quinoprotein glucose dehydrogenase (GDH) in the membranes of Escherichia coli are described, together with the changes in activity in a site-directed mutant in which His262 has been altered to a tyrosine residue (H262Y-GDH). The differences in catalytic efficiency between substrates are mainly related to differences in their affinity for the enzyme....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1647 1-2  شماره 

صفحات  -

تاریخ انتشار 2003